Package: multicmp 1.0

multicmp: Flexible Modeling of Multivariate Count Data via the Multivariate Conway-Maxwell-Poisson Distribution

A toolkit containing statistical analysis models motivated by multivariate forms of the Conway-Maxwell-Poisson (COM-Poisson) distribution for flexible modeling of multivariate count data, especially in the presence of data dispersion. Currently the package only supports bivariate data, via the bivariate COM-Poisson distribution described in Sellers et al. (2016) <doi:10.1016/j.jmva.2016.04.007>. Future development will extend the package to higher-dimensional data.

Authors:Kimberly Sellers [aut], Darcy Steeg Morris [aut], Narayanaswamy Balakrishnan [aut], Diag Davenport [aut, cre]

multicmp_1.0.tar.gz
multicmp_1.0.zip(r-4.5)multicmp_1.0.zip(r-4.4)multicmp_1.0.zip(r-4.3)
multicmp_1.0.tgz(r-4.4-any)multicmp_1.0.tgz(r-4.3-any)
multicmp_1.0.tar.gz(r-4.5-noble)multicmp_1.0.tar.gz(r-4.4-noble)
multicmp_1.0.tgz(r-4.4-emscripten)multicmp_1.0.tgz(r-4.3-emscripten)
multicmp.pdf |multicmp.html
multicmp/json (API)

# Install 'multicmp' in R:
install.packages('multicmp', repos = c('https://diagdavenport.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/diagdavenport/multicmp/issues

Datasets:

On CRAN:

2.00 score 4 scripts 175 downloads 2 exports 1 dependencies

Last updated 6 years agofrom:b5e7d69340. Checks:OK: 3 NOTE: 4. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 06 2024
R-4.5-winNOTENov 06 2024
R-4.5-linuxNOTENov 06 2024
R-4.4-winNOTENov 06 2024
R-4.4-macNOTENov 06 2024
R-4.3-winOKNov 06 2024
R-4.3-macOKNov 06 2024

Exports:dbivCMPmulticmpests

Dependencies:numDeriv